Second Yamabe constant on Riemannian products
نویسندگان
چکیده
منابع مشابه
Second Yamabe constant on Riemannian products
Let (M, g) be a closed Riemannian manifold (m ≥ 2) of positive scalar curvature and (N, h) any closed manifold. We study the asymptotic behaviour of the second Yamabe constant and the second N−Yamabe constant of (M × N, g + th) as t goes to +∞. We obtain that limt→+∞ Y (M ×N, [g+ th]) = 2 2 m+n Y (M ×R, [g+ ge]). If n ≥ 2, we show the existence of nodal solutions of the Yamabe equation on (M × ...
متن کاملEvolution of Yamabe constant under Ricci flow
In this note under a crucial technical assumption we derive a differential equality of Yamabe constant Y (g (t)) where g (t) is a solution of the Ricci flow on a closed n-manifold. As an application we show that when g (0) is a Yamabe metric at time t = 0 and Rgα n−1 is not a positive eigenvalue of the Laplacian ∆gα for any Yamabe metric gα in the conformal class [g0], then d dt ∣∣ t=0 Y (g (t)...
متن کاملThe conformal Yamabe constant of product manifolds
Let (V, g) and (W,h) be compact Riemannian manifolds of dimension at least 3. We derive a lower bound for the conformal Yamabe constant of the product manifold (V × W, g + h) in terms of the conformal Yamabe constants of (V, g) and (W,h).
متن کاملConformal Curvature Flows on Compact Manifold of Negative Yamabe Constant
Abstract. We study some conformal curvature flows related to prescribed curvature problems on a smooth compact Riemannian manifold (M, g0) with or without boundary, which is of negative (generalized) Yamabe constant, including scalar curvature flow and conformal mean curvature flow. Using such flows, we show that there exists a unique conformal metric of g0 such that its scalar curvature in the...
متن کاملOn the existence of the Yamabe problem on contact Riemannian manifolds
It was proved in [25] that for a contact Riemannian manifold with non-integrable almost complex structure, the Yamabe problem is subcritical in the sense that its Yamabe invariant is less than that of the Heisenberg group. In this paper we give a complete proof of the solvability of the contact Riemannian Yamabe problem in the subcritical case. These two results implies that the Yamabe problem ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Geometry and Physics
سال: 2017
ISSN: 0393-0440
DOI: 10.1016/j.geomphys.2016.11.025